1,014 research outputs found

    On the formation of singularities of solutions of nonlinear differential systems in antistokes directions

    Full text link
    We determine the position and the type of spontaneous singularities of solutions of generic analytic nonlinear differential systems in the complex plane, arising along antistokes directions towards irregular singular points of the system. Placing the singularity of the system at infinity we look at equations of the form y′=f(x−1,y)\mathbf{y}'=\mathbf{f}(x^{-1},\mathbf{y}) with f\mathbf{f} analytic in a neighborhood of (0,0)(0,\mathbf{0}), with genericity assumptions; x=∞x=\infty is then a rank one singular point. We analyze the singularities of those solutions y(x)\mathbf{y}(x) which tend to zero for x→∞x\to \infty in some sectorial region, on the edges of the maximal region (also described) with this property. After standard normalization of the differential system, it is shown that singularities occuring in antistokes directions are grouped in nearly periodical arrays of similar singularities as x→∞x\to\infty, the location of the array depending on the solution while the (near-) period and type of singularity are determined by the form of the differential system.Comment: 61

    Analytic linearization of nonlinear perturbations of Fuchsian systems

    Full text link
    Nonlinear perturbation of Fuchsian systems are studied in regions including two singularities. Such systems are not necessarily analytically equivalent to their linear part (they are not linearizable). Nevertheless, it is shown that in the case when the linear part has commuting monodromy, and the eigenvalues have positive real parts, there exists a unique correction function of the nonlinear part so that the corrected system becomes analytically linearizable

    Evolution of a model quantum system under time periodic forcing: conditions for complete ionization

    Full text link
    We analyze the time evolution of a one-dimensional quantum system with an attractive delta function potential whose strength is subjected to a time periodic (zero mean) parametric variation η(t)\eta(t). We show that for generic η(t)\eta(t), which includes the sum of any finite number of harmonics, the system, started in a bound state will get fully ionized as t→∞t\to\infty. This is irrespective of the magnitude or frequency (resonant or not) of η(t)\eta(t). There are however exceptional, very non-generic η(t)\eta(t), that do not lead to full ionization, which include rather simple explicit periodic functions. For these η(t)\eta(t) the system evolves to a nontrivial localized stationary state which is related to eigenfunctions of the Floquet operator

    Decay of a Bound State under a Time-Periodic Perturbation: a Toy Case

    Full text link
    We study the time evolution of a three dimensional quantum particle, initially in a bound state, under the action of a time-periodic zero range interaction with ``strength'' (\alpha(t)). Under very weak generic conditions on the Fourier coefficients of (\alpha(t)), we prove complete ionization as (t \to \infty). We prove also that, under the same conditions, all the states of the system are scattering states.Comment: LaTeX2e, 15 page

    Singular normal form for the Painlev\'e equation P1

    Full text link
    We show that there exists a rational change of coordinates of Painlev\'e's P1 equation y′′=6y2+xy''=6y^2+x and of the elliptic equation y′′=6y2y''=6y^2 after which these two equations become analytically equivalent in a region in the complex phase space where yy and y′y' are unbounded. The region of equivalence comprises all singularities of solutions of P1 (i.e. outside the region of equivalence, solutions are analytic). The Painlev\'e property of P1 (that the only movable singularities are poles) follows as a corollary. Conversely, we argue that the Painlev\'e property is crucial in reducing P1, in a singular regime, to an equation integrable by quadratures
    • …
    corecore